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Abstract

A bijection from the vertex set V of a graph G to {1,2,……|V|} is called a prime cordial labeling of G if

each edge uv is assigned the label 1 if gcd (f(u), f(v))=1 and 0 if gcd (f(u), f(v))>1, where the number of

edges labeled with 0 and the number of edges labeled with 1 differ by at most 1.
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Introduction

Graph Labeling have enormous applications within mathematics as well as to several areas of computer

science and communication networks. A useful survey to know about the numerous graph labeling methods

is given by J.A. Gallian (Gallian, 2012). By combining the relatively prime concept in number theory and

cordial labeling concept (Cahit, 1987) in graph labeling, Sundaram et al. (Sundaram et al., 2005) introduced

the concept called prime cordial labeling.

A bijection f from vertex set V (G) to {1, 2 ,……|V(G)|} of a graph G is called a prime cordial labeling of

G if for each edge e= uv ∈ E,

f*(e=uv)=1; if gcd (f(u),f(v))=1

=0; if gcd (f(u),f(v))>1

then |ef(0) –ef(1)|≤1, where ef(0) is the number of edges labeled with 0 and ef(1) is the number of edges

labeled with 1.
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In (Baskar Babujee and Babitha, 2013), (Baskar Babujee and Shobana, 2009), (Seoud and Salim, 2010) the

following graphs are proved to have prime cordial labeling: cn if and only if n≥ 6 ; Pn if and only if n≠ 3 or

5;k1,n(n odd); the graph obtained by subdividing each edge of k1,n if and only if n≥ 3.
Preliminaries

The following theorems are proved by G.V.Ghodasara, J.P.Jena (Ghodasara, 2014).

Theorems 2.1

The graph G obtained by joining two copies of the Petersen graph by a path of arbitrary length

is prime cordial.

Theorem 2.2

The graph G obtained by joining two copies of fan graph Fn by a path of arbitrary length is

prime cordial.

Theorem 2.3

The graph G obtained by joining two copies of flower graph Fln by a path of arbitrary length is prime

cordial.

Theorem 2.4

The graph G obtained by joining two copies of cycle graph Cn with a triangle by a path of arbitrary length is

prime cordial.

Prime Cordial Labeling of graph P (a, 4)

Definition 3.1

Let u and v be two fixed vertices. We connect u and v by means of “b” internally disjoint paths of length

”a”. The resulting graph is denoted by P (a, b).

Example 3.2

The   vertices   of   P (5,4) are labeled as follows,
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In this paper we prove that P(a,b) has Prime Cordial Labeling when b=4.

Theorem 3.3

The graph P(a,4) has prime cordial labeling.

Proof:

Case 1: a=3n,n=1,2,3……

We name the vertices of the graph P(3n,4) as follows:
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This graph has 4(3n-1) +2=12n-2 vertices and 12n edges. Let e1,1, e2,1, e3,1 and e4,1 be the

edges joining the vertex u0 with u1,1, u2,1, u3,1 and u4,1 respectively. Similarly let e1,3n, e2,3n, e3,3n and

e4,3n be the edges joining the vertex v0 with u1,3n-1 , u2,3n-1 , u3,3n-1, and  u4,3n-1 respectively.

Let e i, j be the edge joining u i,j-1 and ui, j for i=1,2,3,4 and j=2,3,…3n-1

Define f: V(G)→{1,2,…..12n-2} as follows:

f(u0)=12n-2

f(v0)=12n-3

f(u1,j)=2j-1, for j=1,2,…..3n-1

f (u2,j)=2j, for j=1,2,….3n-1

f(u3,j)=6n-2+2j-1, for j=1,2,…3n-1

f(u4,j)=6n-2+2j, for j=1,2,…3n-1

Clearly, f is one-one.

It is clear that,

f*(e1,1)=1

f*(e2,1)=0

f*(e3,1)=0

f*(e4,1)=0

f*(e1,3n)=0

f*(e2,3n)=1

f*(e3,3n)=1

f*(e4,3n)=1

f*(e i, j)=1 for i=1,3 and j=2,3,…3n-1
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f*(ei,j)=0 for i=2,4 and j=2,3,….3n-1∴|e f(0)-e f(1)|=0≤1

This shows that the graph P(3n,4) has a prime cordial labeling.

Example 3.4 Prime Cordial Labeling of P(6,4)

ef(0)=12, ef(1)=12

Case 2: a=3n+1, n=1,2,3,…..

Proof:

We name the vertices of the graph P(3n+1,4) as follows,
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This graph has 12n+2 vertices and 12n+4 edges. Let e1,1, e2,1, e3,1 and e4,1 be the edges joining the

vertex u0 with u1,1, u2,1 ,u3,1 and u4,1 respectively. Similarly let e1,3n+1, e2,3n+1, e3,3n+1 and  e4,3n+1 be

the edges joining the vertex v0 with u1,3n ,u2,3n ,u3,3n, and  u4,3n respectively.

Let e i, j be the edge joining u i,j-1 and u i, j for i=1,2,3,4 and j=2,3,…3n

Define f: V (G)→{1,2,…..12n+2} as follows:

f(u0)=6n+2

f(v0)=12n-3

f(u1,j)=2j-1, for j=1,2,…..3n

f(u2,j)=2j, for j=1,2,….3n

f(u3,j)=6n-1+2j ,for j=1,2,…3n-2

f(u3,j)=6n+1+2j, for j=3n-1,3n

f(u4,1)=12n+2

f(u4,j)=6n+2j,   for j=2,3,…3n

Clearly, f is one-one.

It is clear that,

f*(e1,1)=1

f*(e2,1)=0

f*(e3,1)=1

f*(e4,1)=0

f*(e1,3n+1)=1

f*(e2,3n+1)=0

f*(e3,3n+1)=1
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f*(e4,3n+1)=0

f*(e i, j)=1 for i=1,3 and j=2,3,…3n

f*(e i, j)=0 for i=2,4 and j=2,3,….3n∴|ef (0)- ef (1)|=0≤1

This shows that the graph P (3n+1,4) has a prime cordial labeling.

Example 3.5 Prime Cordial Labeling of P(7,4)

ef(0)=14, ef(1)=14

Case 3: a=3n+2,n=1,2,3,…..

Proof:

We name the vertices of the graph P(3n+2,4) as follows,
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This graph has 12n+6 vertices and 12n+8 edges. Let e1,1, e2,1, e3,1 and e4,1 be the edges joining the vertex

u0 with u1,1 , u2,1, u3,1 and u4,1 respectively. Similarly let e1,3n+2, e2,3n+2, e3,3n+2 and e4,3n+2 be the edges

joining the vertex v0 with u1,3n+1, u2,3n+1, u3,3n+1, and  u4,3n+1 respectively.

Let e i, j be the edge joining ui,j-1 and u I, j for i=1,2,3,4 and j=2,3,…3n+1

Define f:V(G)→{1,2,…..12n+6} as follows:

f(u0)=6n+3

f(v0)=12n+2

f(u1,j)=2j-1, for j=1,2,…..3n+1

f(u2,j)=2j,  for j=1,2,….3n+1

f(u3,1)=12n+3

f(u3,j)=6n+1+2j for j=2,3,…..,3n

f(u3,3n+1)=12n+5

f(u4,j)=6n+2+2j for j=1,2,..…,3n+1

f(u4,j)=6n+4+2j, for j=3n,3n+1

Clearly, f is one-one.

It is clear that,

f*(e1,1)=1

f*(e2,1)=1

f*(e3,1)=0

f*(e4,1)=1

f*(e1,3n+2)=0
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f*(e2,3n+2)=0

f*(e3,3n+2)=1

f*(e4,3n+2)=0

f*(e i, j)=1 for i=1,3 and j=2,3,…3n+1

f*(e i, j)=0 for i=2,4 and j=2,3,…3n+1∴|ef(0)-ef(1)|=0≤1

This shows that the graph P(3n+2,4) has a prime cordial labeling.

Example 3.6   Prime Cordial Labeling of P(5,4)

ef(0)=10, ef(1)=10
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